

Standalone Nested Loop Acceleration on CGRAs for Signal Processing Applications

Chilankamol Sunny, Satyajit Das, Kevin Martin, Philippe Coussy

112004004@smail.iitpkd.ac.in

Jan 19, 2024 SCC Munich, Germany

> The Workshop on Design and Architectures for Signal and Image Processing

OVERVIEW

- INTRODUCTION
- MOTIVATION & BACKGROUND
- PROPOSED APPROACH
- RESULTS & DISCUSSION
- CONCLUSION

OVERVIEW

INTRODUCTION

- MOTIVATION & BACKGROUND
- PROPOSED APPROACH
- RESULTS & DISCUSSION
- CONCLUSION

• High performance computing within stringent power budgets

- Coarse-Grained Reconfigurable Array (CGRA) Architecture as accelerator
 - Near-ASIC energy efficiency and performance
 - Software-like programmability

[A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications, Liu Leibo et al., CSUR, 2019]

• High performance computing within stringent power budgets

- Coarse-Grained Reconfigurable Array (CGRA) Architecture as accelerator
 - Near-ASIC energy efficiency and performance
 - Software-like programmability

Architecture comparison in terms of flexibility, performance, and energy efficiency.

[A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications, Liu Leibo et al., CSUR, 2019]

What is a CGRA?

- **Array** of interconnected Processing Elements (PEs)
- Reconfigurable
 - PEs configurable to perform different operations
- Coarse-Grained
 - Support for higher-level applications like multiplication on multi-bit data
 - Word-level configurability

Problem of Interest

- Hardware efficiency comes at the cost of hard programming
 - Automate mapping process
- Design optimizations and mapping techniques to improve the performance of CGRAs
- Focus on the optimized execution of the innermost loop
 - Outer loops executed on the host processor
 - Increases synchronization overhead
 - Diminishes the benefits of acceleration provided by the CGRA
- Optimized mapping techniques and improved architectural designs NOT Sufficient to guarantee the best performance

Loop Execution Model

Defines how loops are distributed between CGRA and host processor

Loop Execution Model

Hosted	 Executes the innermost loop on CGRA Outer loops on host CPU
Standalone	 Executes outer loops as well as the innermost loop on CGRA

Major Contributions

- Explorative study of different execution models
 - Impact in determining the performance and energy efficiency of CGRAs

• Compilation flow supporting the standalone execution of nested loops

OVERVIEW

- INTRODUCTION
- MOTIVATION & BACKGROUND
- PROPOSED APPROACH
- RESULTS AND DISCUSSION
- CONCLUSION

Hosted Loop Execution Model

TCDM: Tightly coupled Data Memory

- **1.** Outer loop start execution
- 2. Live-in variables store from CPU
- 3. CGRA start execution
- 4. Live-in variables load in CGRA
- 5. CGRA execution innermost loop
- 6. Live-out variables store from CGRA
- 7. CGRA end execution
- 8. Live-out variables load in CPU
- 9. Outer loop end execution
- Live-in and live-out variables are transferred through shared memory
 - Live-in Variables: variables needed for the CGRA to execute the innermost loop
 - Live-out Variables: variables the processor needs from CGRA to execute the outer loops

Standalone Loop Execution Model

- 1. CGRA start execution
- 2. CGRA execution outer loops + innermost loop
- 3. CGRA end execution

Overhead of Hosted Execution Model : Extra memory operations and communication for synchronization

Ideal Execution Model : Standalone

Hosted Loop Execution Model

- 1. Outer loop start execution
- 2. Live-in variables store from CPU

- 6. Live-out variables store from CGRA
- 7. CGRA end execution
- 8. Live-out variables load in CPU
- 9. Outer loop end execution

Existing Solutions - Hosted

- Most of the CGRA implementations follow the hosted loop execution model
 - Synchronization overhead with host processor
- Optimizes execution of the innermost loop execution
 - Modulo scheduling, loop unrolling, loop flattening
 - Modulo scheduling, the most commonly used loop optimization technique

for(i=0;i<32;i=i+1){		
sum=c[i];		
for(j=0;j<32;j=j+1) {		
sum+=a[i][j]+b[i][j];		
}		
c[i]=sum;		

Standalone Execution Model Modulo Scheduling

Modulo Scheduling

- Software pipelining technique
 - Overlapped execution of different iterations of the innermost loop
- Finds a schedule of operations from different iterations
 - Repeated in a short interval called initiation interval (II)

[Himap: Fast and scalable high-quality mapping on cgra via hierarchical abstraction, Wijerathne, D. et al., IEEE TCAD, 2021] [Ramp: Resource-aware mapping for cgras, Dave, S. et al., DAC, 2018] [Flattening-based mapping of imperfect loop nests for cgras, Lee, J. et al., CODES, 2014] [Polyhedral model based mapping optimization of loop nests for cgras, Liu D., et al., DAC, 2013] [Epimap: Using epimorphism to map applications on cgras, Hamzeh M. et al., DAC, 2012] [Edge-centric modulo scheduling for coarse-grained recongurable architectures, Park H. et al., PACT, 2008]

Existing Solutions - Hosted

Modulo Scheduling

- MDFG (Modulo Data Flow Graph)
 - DFG formed by the repeating schedule of length II
- Prologue and Epilogue
 - DFGs formed by the set of operations executed before and after the MDFG
 - Modulo DFG Trio (MDT)
- Mapping Problem
 - Considers application mapping a DFG mapping problem
 - Maps MDFG
 - Prologue and epilogue mappings prepared from the MDFG mapping

sum+=a[i][j]+b[i][j]

[Iterative modulo scheduling: An algorithm for software pipelining loops, Rau, B.R., MICRO, 1994]

Separate mapping of MDFG, prologue, and epilogue considering each as an individual DFG improves performance

15

Existing Solutions - Standalone

Cheng et al.

- Flattens loop nests into a single-nested loop to facilitate DFG mapping
- Modulo schedules the resultant DFG
- Inflated DFG when the number of loops gets increased
 - Increased II and high energy consumption

Integrated Programmable Array (IPA) [Das et al.]

- Employs direct CDFG mapping
 - Register allocation-based mapping
- Does not support modulo scheduling

[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020] [Efficient mapping of cdfg onto coarse-grained reconfigurable array architectures, Das, S. et al., ASP-DAC, 2017]

OVERVIEW

- INTRODUCTION
- MOTIVATION & BACKGROUND
- PROPOSED APPROACH
- RESULTS & DISCUSSION
- CONCLUSION

Standalone Execution Model Modulo Scheduling Separate mapping of MDFG, prologue, epilogue

A novel compilation flow supporting:

- Standalone execution of the entire loop nest
 - Direct CDFG Mapping
- Modulo scheduling of the innermost loop

Standalone Execution Model Modulo Scheduling Separate mapping of MDFG, prologue, epilogue

A novel compilation flow supporting:

- Standalone execution of the entire loop nest
 - Direct CDFG Mapping
- Modulo scheduling of the innermost loop

Combines modulo scheduling with CDFG mapping

Separate mapping of MDFG, prologue and epilogue DFGs (MDT)

Direct CDFG Mapping

Register Allocation-Based Constraint-Aware Placement [Das et al.]

- Each Basic block (BB) in the CDFG mapped individually
- Control flow mapping by supporting JMP instruction
- Maintains data integrity between BB mappings
 - Symbol variables : variables that are used in multiple BBs
- Constraint-Aware Placement
 - Impose register allocation-based constraints in mapping the data nodes (variables)

Control and Data Flow Graph (CDFG)

- Number of constraints depends on DFG selection criteria
 - Breadth-first search (BFS) induces the least number of constraints
 - Mapping BBs with a greater number of symbol nodes early helps to reduce the number of constraints

Proposed Compilation Flow

MDT-based CDFG transformation

- Innermost loop DFG replaced with a CDFG formed by Modulo DFG Trio (MDT)
 - Nested CDFG mapping problem

DFG selection by Modulo DFG Trio Traversal (MDTT)

- DFG (BB) selection affects the number of constraints
 - Mapping BBs with a greater number of symbol nodes early helps to reduce the number of target location constraints
- MDFG contains the highest number of symbol variables among the DFGs in MDT

OVERVIEW

INTRODUCTION

CONCLUSION

- PROPOSED APPROACH
- MOTIVATION & BACKGROUND
- RESULTS & DISCUSSION

Experimental Setup

- Target CGRA: 4×4 PE array configuration of IPA architecture
 - Loosely coupled with host CPU (RISCV)
- RTL synthesis: Cadence Genus
 - 90nm CMOS technology library
- Placement & Routing : Cadence Innovus
- Power Analysis : Cadence Voltus
- RTL/ netlist simulation: Questasim
- A set of loop-intensive signal processing kernels
 - Including those from PolyBench benchmark suite

PHASE 1: Performance Comparison of Different Execution Models

- Standalone [Proposed] vs Hosted
- Modulo Scheduling Technique: Epimap [Hamzeh et al.]

Execution Latency (cycles)

Kernel	Hosted	Standalone	Speed-up
Matrix Multiplication	464 159	113 310	4.10x
Histogram Equalization	25 225	15 484	1.63x
2D Non-Sep Filter	2 783 615	225 768	12.33x
FIR Filter	43 365	6,308	6.87x
DCT	14 450	2 813	5.14x
Bicg	12 452	6 451	1.93x
2D Convolution	1 352 406	126 446	10.70x
Sobel Filter	2 534 676	2 23 844	11.32x
Average			6.75x

 $[Epim qp; l/singerimorphi] 12:33% application a Verage Horrzon 75% speed <math>^{2}012^{1}$

PHASE 1: Performance Comparison of Different Execution Models

• Standalone [Proposed] vs Hosted

Throughput (Mpbs)

Kernel	Hosted	Standalone	Gain
Matrix Multiplication	1.24	5.07	4.10x
Histogram Equalization	106.83	174.03	1.63x
2D Non-Sep Filter	0.97	11.94	12.33x
FIR Filter	2.59	17.80	6.87x
DCT	2.49	12.77	5.14x
Bicg	2.89	5.57	1.93x
2D Convolution	1.00	10.66	10.70x
Sobel Filter	0.91	10.27	11.32x
Average			6.75x

A maximum of **12.33x** and an average of **6.75x** gain in Throughput

PHASE 1: Energy Results on Different Execution Models

Standalone [Proposed] vs Hosted

Energy (µJoule)

Kernel	Hosted	Standalone	Gain
Matrix Multiplication	287.64	58.97	4.88x
Histogram Equalization	15.31	8.06	1.90x
2D Non-Sep Filter	1702.74	117.49	14.49x
FIR Filter	26.37	3.28	8.03x
DCT	8.79	1.46	6.01x
Bicg	7.56	3.36	2.25x
2D Convolution	845.47	65.80	12.85x
Sobel Filter	1583.88	116.49	13.60x
Average			8.00x

Memory operations performed in the live-in and live-out phases of the hosted execution significantly increase energy consumption A maximum of **14.49x** and an average of **8.00x** reduction in energy consumption

PHASE 2: Comparison with state-of-the-art Standalone Solution

• Proposed vs state-of-the-art solution employing Loop Flattening [Cheng et al.]

No. of nodes in the modulo scheduled DFG

[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020]

PHASE 2: Comparison with state-of-the-art Standalone Solution

• Proposed vs state-of-the-art solution employing Loop Flattening [Cheng et al.]

Execution Latency (cycles)

A maximum of **4.80x** and an average of **2.80x** speed-up

[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020]

OVERVIEW

- INTRODUCTION
- MOTIVATION & BACKGROUND
- PROPOSED APPROACH
- RESULTS & DISCUSSION
- CONCLUSION

CONCLUSION

- Explorative study on the impact of execution model on performance and energy efficiency of CGRAs
- A novel compilation flow for standalone nested loop acceleration on CGRA
- Combines modulo scheduling with direct CDFG mapping
 - Modulo schedules the innermost loop
 - Maps prologue, MDFG, and epilogue DFGs separately
- A maximum of 12.33× and an average of 6.75× speed-up
 Up to 14.49x and an average of 8.00x reduction in energy over hosted model
- Up to **4.80**× and an average of **2.80**× speed-up over the state-of-the-art standalone solution

THANK YOU

Questions?

112004004@smail.iitpkd.ac.in

REFERENCES

[1] Liu, L., Zhu, J., Li, Z., Lu, Y., Deng, Y., Han, J., Yin, S., Wei, S.: A survey of coarsegrained reconfigurable architecture and design: Taxonomy, challenges, and applications. ACM Comput. Surv. 52(6) (Oct 2019). <u>https://doi.org/10.1145/3357375</u>

[2] Hamzeh, M., Shrivastava, A., Vrudhula, S.: Epimap: Using epimorphism to map applications on cgras. In: Proceedings of the 49th Annual Design Automation Conference (2012)

[3] Dave, S., Balasubramanian, M., Shrivastava, A.: Ramp: Resource-aware mapping for cgras. In: Proceedings of the 55th Annual Design Automation Conference (2018)

[4] Rau, B.R.: Iterative modulo scheduling: An algorithm for software pipelining loops. In: Proceedings of the 27th annual international symposium on Microarchitecture (1994)

[5] Tan, C., Xie, C., Li, A., Barker, K.J., Tumeo, A.: Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras. In: 2020 IEEE 38th International Conference on Computer Design (ICCD). IEEE (2020)

[6] Das, S., Martin, K.J., Coussy, P., Rossi, D., Benini, L.: Efficient mapping of cdfg onto coarse-grained reconfigurable array architectures. In: 2017 22nd Asia and South Pacic Design Automation Conference (ASPDAC). pp. 127{132. IEEE (2017)

[7] Das, S., Martin, K.J., Rossi, D., Coussy, P., Benini, L.: An energy-efficient integrated programmable array accelerator and compilation ow for near-sensor ultralow power processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38(6), 1095{1108 (2018)

[8] Wijerathne, D., Li, Z., Pathania, A., Mitra, T., Thiele, L.: Himap: Fast and scalable high-quality mapping on cgra via hierarchical abstraction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41(10) (2021)

[9] Pouchet, L.N., Grauer-Gray, S.: Polybench: The polyhedral benchmark suite, 2012 (2012), http://www-roc.inria.fr/pouchet/software/polybench