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• High performance computing within stringent power budgets

• Coarse-Grained Reconfigurable Array (CGRA) Architecture as accelerator
– Near-ASIC energy efficiency and performance 
– Software-like programmability
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• Array of interconnected Processing Elements (PEs)
• Reconfigurable

– PEs configurable to perform different operations

• Coarse-Grained
– Support for higher-level applications like multiplication on multi-bit data
– Word-level configurability 
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What is a CGRA?



• Hardware efficiency comes at the cost of hard programming
– Automate mapping process

• Design optimizations and mapping techniques to improve the performance of CGRAs

• Focus on the optimized execution of the innermost loop
– Outer loops executed on the host processor
– Increases synchronization overhead 
– Diminishes the benefits of acceleration provided by the CGRA

• Optimized mapping techniques and improved architectural designs NOT Sufficient to 
guarantee the best performance
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Problem of Interest

Loop Execution Model
Defines how loops are distributed between CGRA and host processor



Loop Execution Model
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INTRODUCTION

Hosted

• Executes outer loops as well as the innermost loop on 
CGRAStandalone

• Executes the innermost loop on CGRA
• Outer loops on host CPU 

for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[i];
for(j=0;j<32;j=j+1) {

sum=seed+tmp*j;

#pragma parallel CGRA
for(k=0;k<32;k=k+1) {

sum+=a[i][k]*b[k][j];
}    

tmp=sum/32;
c[i][j]=a[i][j]+tmp;

}
t[i]=tmp;

}

Hosted

CGRA Host
CPU

for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[i];
for(j=0;j<32;j=j+1) {

sum=seed+tmp*j;

for(k=0;k<32;k=k+1) {
sum+=a[i][k]*b[k][j];
}   

tmp=sum/32;
c[i][j]=a[i][j]+tmp;

}
t[i]=tmp;

}

Standalone

CGRA Host
CPU



• Explorative study of different execution models
– Impact in determining the performance and energy efficiency of CGRAs

• Compilation flow supporting the standalone execution of nested loops
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Major Contributions
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Hosted Loop Execution Model
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Context 
memory

for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[i];
for(j=0;j<32;j=j+1){

sum=seed+tmp*j;

#pragma parallel CGRA
for(k=0;k<32;k=k+1)
{

sum+=a[i][k]*b[k][j];
}           

tmp=sum/32;             
c[i][j]=a[i][j]+tmp;

}
t[i]=tmp;

}

On-chip TCDM

SoC Bus
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Off-chip L2 Memory

CGRA

1. Outer loop start execution

2. Live-in variables store from CPU

3. CGRA start execution

4. Live-in variables load in CGRA

5. CGRA execution - innermost loop

6. Live-out variables store from 
CGRA

7. CGRA end execution

8. Live-out variables load in CPU

9. Outer loop end execution

• Live-in and live-out variables are transferred through shared memory
– Live-in Variables: variables needed for the CGRA to execute the innermost loop 
– Live-out Variables: variables the processor needs from CGRA to execute the outer loops

TCDM: Tightly coupled Data Memory



Ideal Execution Model : Standalone
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for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[i];
for(j=0;j<32;j=j+1){

sum=seed+tmp*j;

for(k=0;k<32;k=k+1)
{

sum+=a[i][k]*b[k][j];
}           

tmp=sum/32;             
c[i][j]=a[i][j]+tmp;

}
t[i]=tmp;

}
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Off-chip L2 Memory

CGRA

Standalone Loop Execution Model

1. Outer loop start execution

2. Live-in variables store from CPU

3. CGRA start execution

4. Live-in variables load in CGRA

5. CGRA execution - innermost loop

6. Live-out variables store from CGRA

7. CGRA end execution

8. Live-out variables load in CPU

9. Outer loop end execution

1. CGRA start execution

2. CGRA execution - outer loops + innermost loop

3. CGRA end execution

1

2

3

Hosted execution model Stand-alone execution model 

MOTIVATION & BACKGROUND
Hosted Loop Execution  Model                 

Overhead of Hosted Execution Model : Extra memory operations and communication for synchronization

Standalone Execution Model
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• Most of the CGRA implementations follow the hosted loop execution model
– Synchronization overhead with host processor

• Optimizes execution of the innermost loop execution
– Modulo scheduling, loop unrolling, loop flattening
– Modulo scheduling, the most commonly used loop optimization technique 

MOTIVATION & BACKGROUND

13

[Himap: Fast and scalable high-quality mapping on cgra via hierarchical abstraction, Wijerathne, D. et al., IEEE TCAD, 2021]
[Ramp: Resource-aware mapping for cgras, Dave, S. et al., DAC, 2018]
[Flattening-based mapping of imperfect loop nests for cgras, Lee, J. et al., CODES, 2014]
[Polyhedral model based mapping optimization of loop nests for cgras, Liu D., et al., DAC, 2013]
[Epimap: Using epimorphism to map applications on cgras, Hamzeh M. et al., DAC, 2012]
[Edge-centric modulo scheduling for coarse-grained recongurable architectures, Park H. et al., PACT, 2008]

Modulo Scheduling

Existing Solutions - Hosted for(i=0;i<32;i=i+1){
sum=c[i];
for(j=0;j<32;j=j+1) {

                  sum+=a[i][j]+b[i][j];
}    
c[i]=sum;

}

Standalone Execution Model
Modulo Scheduling

• Software pipelining technique 
– Overlapped execution of different iterations of the innermost loop

• Finds a schedule of operations from different iterations 
– Repeated in a short interval called initiation interval (II)



• MDFG (Modulo Data Flow Graph)
– DFG formed by the repeating schedule of length II

• Prologue and Epilogue  
– DFGs formed by the set of operations executed before and after the MDFG
– Modulo DFG Trio (MDT)

• Mapping Problem
– Considers application mapping a DFG mapping problem
– Maps MDFG
– Prologue and epilogue mappings prepared from the MDFG mapping

MOTIVATION & BACKGROUND
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Modulo Scheduling

[Iterative modulo scheduling: An algorithm for software pipelining loops, Rau, B.R., MICRO, 1994]

PROLOGUE

MDFG

EPILOGUE

II = 2

Existing Solutions - Hosted

sum+=a[i][j]+b[i][j]

for(i=0;i<32;i=i+1){
sum=c[i];
for(j=0;j<32;j=j+1) {

                  sum+=a[i][j]+b[i][j];
}    
c[i]=sum;

}

b[i][j]

+

a[i][j]

sum
Data Flow Graph (DFG)

+



Separate mapping of MDFG, prologue, and epilogue considering each as an individual DFG improves performance

MOTIVATION & BACKGROUND
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Modulo Scheduling

EPILOGUE Mapping replicated 
from MDFG Mapping  2x2 CGRA
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Innermost loop DFG

Modulo scheduling at MII =1
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Separate PROLOGUE Mapping  2x2 CGRA

C
D

D

time

time
Separate EPILOGUE Mapping  2x2 CGRA
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2 cycles

3 cycles
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CGRA

Standalone Execution Model
Modulo Scheduling
Separate mapping of MDFG, prologue, epilogue
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Cheng et al.
• Flattens loop nests into a single-nested loop to facilitate DFG mapping

• Modulo schedules the resultant DFG

• Inflated DFG when the number of loops gets increased 
– Increased II and high energy consumption

[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020]
[Efficient mapping of cdfg onto coarse-grained reconfigurable array architectures, Das, S. et al., ASP-DAC, 2017]

Existing Solutions - Standalone

• Employs direct CDFG mapping
– Register allocation-based mapping

• Does not support modulo scheduling

Integrated Programmable Array (IPA) [Das et al.] 
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PROPOSED APPROACH

• Standalone execution of the entire loop nest
• Direct CDFG Mapping

• Modulo scheduling of the innermost loop

18

A novel compilation flow supporting:

Standalone Execution Model
Modulo Scheduling
Separate mapping of MDFG, prologue, epilogue



PROPOSED APPROACH

• Standalone execution of the entire loop nest
• Direct CDFG Mapping

• Modulo scheduling of the innermost loop

Combines modulo scheduling with CDFG mapping

Separate mapping of MDFG, prologue and epilogue DFGs (MDT)

19

A novel compilation flow supporting:

Standalone Execution Model
Modulo Scheduling
Separate mapping of MDFG, prologue, epilogue



• Each Basic block (BB) in the CDFG mapped individually
• Control flow mapping by supporting JMP instruction

• Maintains data integrity between BB mappings
– Symbol variables : variables that are used in multiple BBs

• Constraint-Aware Placement
– Impose register allocation-based constraints in mapping the data nodes (variables)

• Number of constraints depends on DFG selection criteria
– Breadth-first search (BFS) induces the least number of  constraints
– Mapping BBs with a greater number of symbol nodes early helps to reduce the number of constraints

PROPOSED APPROACH

20[Efficient mapping of cdfg onto coarse-grained reconfigurable array architectures, Das, S. et al., ASP-DAC, 2017]

Direct CDFG Mapping 
Register Allocation-Based Constraint-Aware Placement [Das et al.]

sum+=a[i][j]+b[i][j]
j=j+1

sum=c[i]
j=0

c[i]=sum
i=i+1

j < 32

i=0

i < 32

sum=c[i]
j=0

sum+=a[i][j]+b[i][j]
j=j+1

c[i]=sum
i=i+1

for(i=0;i<32;i=i+1){
sum=c[i];
for(j=0;j<32;j=j+1) {

sum+=a[i][j]+b[i][j];
}    
c[i]=sum;

}

Control and Data Flow Graph (CDFG)



PROPOSED APPROACH
Proposed Compilation Flow
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CDFG ? 
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Constraint-aware 
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BFS (Breadth First Search) MDT (Modulo DFG Trio) MDTT (Modulo DFG Trio Traversal)
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MDT-based CDFG 
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Modulo Scheduling

DFG selection -
BFS

GCC 
Plugin

C Code

CDFG

CGRA Model

N

Last DFG in 
CDFG ? 

Y

N



22

i=0
sum+=a[i][j]+b[i][j]
j=j+1

sum=c[i]
j=0;

Loop1: for(i=0;i<32;i=i+1){
sum=c[i];

Loop2:          for(j=0;j<32;j=j+1) {
sum+=a[i][j]+b[i][j];

}    
c[i]=sum;

}

c[i]=sum
i=i+1

i=0;
i=0

sum=c[i]
j=0;

a1=a[i][j]
b1=b[i][j]
j=j+1

sum+=a1+b1
a1=a[i][j]
b1=b[i][j]
j=j+1

sum+=a1+b1 c[i]=sum
i=i+1

BB_1              BB_2        BB_prologue BB_mdfg BB_epilogue BB_4 

Loop2: j < 32

Loop1: i < 32

• Innermost loop DFG replaced with a CDFG formed by Modulo DFG Trio (MDT)
• Nested CDFG mapping problem

MDT-based CDFG transformation

Repeat 31 X

Loop1: i < 32

PROPOSED APPROACH
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DFG selection by Modulo DFG Trio Traversal (MDTT)
• DFG (BB) selection affects the number of constraints

– Mapping BBs with a greater number of symbol nodes early helps to reduce the number of target location constraints

• MDFG contains the highest number of symbol variables among the DFGs in MDT

A B

D

C A B

D

C A B

D

C

MDFG 

PROLOGUE 

EPILOGUE 

DataNodes[A, B, C]

DataNodes[A, B, C, D]

DataNodes[C, D]

Let P, M and E be the set of all variables in 
prologue, MDFG and epilogue respectively and 
S be the set of all symbol variables (variables used in multiple BBs) 

M = P Ս E
S  = (P Ո M) Ս (M Ո E ) U (P Ո E)
P Ո M = P ; M Ո E = E; (P Ո E) ⃀ M
Therefore S  = P U E U (P Ո E) = M

No. of symbol variables in prologue   = n(S Ո P) = n(M Ո P) = n(P)
No. of symbol variables in MDFG        = n(S Ո M) = n(M Ո M) = n(M)
No. of symbol variables in epilogue   = n(S Ո E) = n(M Ո E) = n(E)
n(M) = n(P) + n(E) – n(P Ո E)                 => n(M) > n(P) & n(M) > n(E) 

Select MDFG

n(P) > n(E)
?

Select Prologue

Select Epilogue

Select Epilogue

Select Prologue

n(P) : no. of variables in prologue
n(E) : no. of variables in epilogue

Y N
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RESULTS & DISCUSSION
Experimental Setup

• Target CGRA: 4×4 PE array configuration of IPA architecture
• Loosely coupled with host CPU (RISCV)

• RTL synthesis: Cadence Genus 
• 90nm CMOS technology library

• Placement & Routing : Cadence Innovus

• Power Analysis : Cadence Voltus

• RTL/ netlist simulation: Questasim

• A set of loop-intensive signal processing kernels 
• Including those from PolyBench benchmark suite

25[An energy-efficient integrated programmable array accelerator and compilation flow for near-sensor ultralow power processing, Das, S. et al., IEEE TCAD, 2018]
[http://www-roc.inria.fr/ pouchet/software/polybench]



RESULTS & DISCUSSION
PHASE 1: Performance Comparison of Different Execution Models
• Standalone [Proposed] vs Hosted 
• Modulo Scheduling Technique: Epimap [Hamzeh et al.]

26[Epimap: Using epimorphism to map applications on cgras, Hamzeh M. et al., DAC, 2012]

Speed-upStandaloneHostedKernel

4.10x113 310464 159Matrix Multiplication

1.63x15 48425 225Histogram Equalization

12.33x225 7682 783 6152D Non-Sep Filter

6.87x6,30843 365FIR Filter

5.14x2 81314 450DCT

1.93x6 45112 452Bicg

10.70x126 4461 352 4062D Convolution

11.32x2 23 8442 534 676Sobel Filter

6.75xAverage

Execution Latency (cycles)

A maximum of 12.33x and an average of 6.75x speed-up



RESULTS & DISCUSSION
PHASE 1: Performance Comparison of Different Execution Models
• Standalone [Proposed] vs Hosted
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GainStandaloneHostedKernel

4.10x5.071.24Matrix Multiplication

1.63x174.03106.83Histogram Equalization

12.33x11.940.972D Non-Sep Filter

6.87x17.802.59FIR Filter

5.14x12.772.49DCT

1.93x5.572.89Bicg

10.70x10.661.002D Convolution

11.32x10.270.91Sobel Filter

6.75xAverage

Throughput (Mpbs)

A maximum of 12.33x and an average of 6.75x gain in Throughput



RESULTS & DISCUSSION
PHASE 1: Energy Results on Different Execution Models
• Standalone [Proposed] vs Hosted

28

GainStandaloneHostedKernel

4.88x58.97287.64Matrix Multiplication

1.90x8.0615.31Histogram Equalization

14.49x117.491702.742D Non-Sep Filter

8.03x3.2826.37FIR Filter

6.01x1.468.79DCT

2.25x3.367.56Bicg

12.85x65.80845.472D Convolution

13.60x116.491583.88Sobel Filter

8.00xAverage

Energy (µJoule)

Memory operations performed in the live-in and live-out phases of the hosted execution significantly increase energy consumption

A maximum of 14.49x and an average of 8.00x reduction in energy consumption



RESULTS & DISCUSSION
PHASE 2: Comparison with state-of-the-art Standalone Solution 
• Proposed vs state-of-the-art solution employing Loop Flattening [Cheng et al.]

29[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020]

No. of nodes in the modulo scheduled DFG



RESULTS & DISCUSSION
PHASE 2: Comparison with state-of-the-art Standalone Solution 
• Proposed vs state-of-the-art solution employing Loop Flattening [Cheng et al.]

30[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020]

Execution Latency (cycles)

A maximum of 4.80x and an average of 2.80x speed-up



• INTRODUCTION
• MOTIVATION & BACKGROUND
• PROPOSED APPROACH
• RESULTS & DISCUSSION
• CONCLUSION

OVERVIEW

31



CONCLUSION
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• Explorative study on the impact of execution model on performance and energy 
efficiency of CGRAs

• A novel compilation flow for  standalone nested loop acceleration on  CGRA

• Combines modulo scheduling with direct CDFG mapping
– Modulo schedules the innermost loop
– Maps prologue, MDFG, and epilogue DFGs separately

• A maximum of 12.33× and an average of 6.75× speed-up
Up to 14.49x and an average of 8.00x reduction in energy over hosted model

• Up to 4.80× and an average of 2.80× speed-up over the state-of-the-art standalone 
solution
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Questions?

112004004@smail.iitpkd.ac.in 
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