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INTRODUCTION

* High performance computing within stringent power budgets

e Coarse-Grained Reconfigurable Array (CGRA) Architecture as accelerator
— Near-ASIC energy efficiency and performance
— Software-like programmability

@ =

Flexibility (Programming)” Performance (GOPS)
Architecture comparison in terms of flexibility, performance and energy efficiency

Energy-efficiency (MOPS/mW)
Energy-efficiency (MOPS/mW)

[A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications, Liu Leibo et al., CSUR, 2019]
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* High performance computing within stringent power budgets

e Coarse-Grained Reconfigurable Array (CGRA) Architecture as accelerator
— Near-ASIC energy efficiency and performance
— Software-like programmability
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INTRODUCTION

What is a CGRA?

* Array of interconnected Processing Elements (PEs)

* Reconfigurable
— PEs configurable to perform different operations

* Coarse-Grained
— Support for higher-level applications like multiplication on multi-bit data
— Word-level configurability
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INTRODUCTION

Problem of Interest

* Hardware efficiency comes at the cost of hard programming

— Automate mapping process

* Design optimizations and mapping techniques to improve the performance of CGRAs

* Focus on the optimized execution of the innermost loop
— Outer loops executed on the host processor
— Increases synchronization overhead
— Diminishes the benefits of acceleration provided by the CGRA

* Optimized mapping techniques and improved architectural designs NOT Sufficient to
guarantee the best performance

Loop Execution Model

Defines how loops are distributed between CGRA and host processor



INTRODUCTION

Loop Execution Model

e Executes the innermost loop on CGRA

Hosted e Outer loops on host CPU

e Executes outer loops as well as the innermost loop on
CGRA

Standalone

(for(i=0;i<32;i=i+1) { )

(for(i=0-i<32-1=i D\
see¢.1=s[.i] 2 trr?p_=t[i]; fosrge;);;?]'z’tln:;i')c[{i]‘
fOf(J=0;J<32;J=J+1?k { for(j=0;j<32;j=j+1) {
sum=seed+tmp*j; sum=seed+tmp*j;
& J
g llel CGRA ) > < il
pragma paralle CGRA for(k=0;k<32;k=k+1) { CGRA
for(k—O,k<32.,k-k+1){ : [ ] ] sum+=a[i][k]*b[K][j]; [ [ | ] blost
sum+=a[i][K]*b[K][j]; [ ] ] } > [ ] ] CPU
® ) 1 L ) 1]
cmp=sum/32; B (mp:sum/32' R
clillil=alilljl+tmp; c[i][j]=a[i]i:j]+tmp' TT
} 7
_ }
tfi]=tmp; i
tli]=tmp;
8 y 8 [i]l=tmp y

Hosted Standalone 8



INTRODUCTION

Major Contributions

* Explorative study of different execution models
— Impact in determining the performance and energy efficiency of CGRAs

 Compilation flow supporting the standalone execution of nested loops
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MOTIVATION & BACKGROUND

Hosted Loop Execution Model
1. Outer loop start execution

2. Live-in variables store from CPU

3. CGRA start execution

for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[i];
for(j=0;j<32;j=j+1){
sum=seed+tmp*j;

4. Live-in variables load in CGRA

#pragma parallel CGRA 5. CGRA execution - innermost loop

for(k=0;k<32;k=k+1)
{
sum+=a[i][k]*b[k][j];

’ Instruction A Lo Context
Cache | v T 2l memory

6. Live-out variables store from
CGRA

tmp=sum/32; 7. CGRA end execution
clillil=ali][j]+tmp;
}

tfi]J=tmp;

SoC Bus

8. Live-out variables load in CPU

TCDM: Tightly coupled Data Memory 9. Outer Ioop end execution

e Live-in and live-out variables are transferred through shared memory

— Live-in Variables: variables needed for the CGRA to execute the innermost loop
— Live-out Variables: variables the processor needs from CGRA to execute the outer loops 11



MOTIVATION & BACKGROUND

Hosted Loop Execution Model

for(i=0;i<32;i=i+1) {
seed=s[i]; tmp=t[il;
for(j=0;j<32;j=j+1)
sum=seed+tmp*j;

1. Outer loop start execution

2. Live-in variables store from CPU

3. CGRA start execution
for(k=0;k<32;k=k+1)
{
sum+=al[i][k]*b[k][j];
} . ‘ “ m m Context
- memory

vara les Io din
alone xecu |on Model

RA execution - innermost loop

tmp=sum/32;
clil(jl=alil[jl+tmp;
}
t[i]=tmp;

6. Live-out variables store from CGRA

7. CGRA end execution

8. Live-out variables load in CPU

—.—> Hosted execution model —‘—> Stand-alone execution model

Standalone Loop Execution Model

1. CGRA start execution

9. Outer loop end execution

2. CGRA execution - outer loops + innermost loop

3. CGRA end execution

Overhead of Hosted Execution Model : Extra memory operations and communication for synchronization

Ideal Execution Model : Standalone



MOTIVATION & BACKGROUND

Existing Solutions - Hosted for(=0:i<32:1-++1)

sum=c[i];
. i i : for(j=0;j<32;j=+1) {
Most of the CGRA implementations follow the hosted loop execution model sun+ali] | +blillil:

— Synchronization overhead with host processor ¥
c[i]=sum;

}

e  Optimizes execution of the innermost loop execution

— Modulo scheduling, loop unrolling, loop flattening
—  Modulo scheduling, the most commonly used loop optimization technique Standalone Execution Model
Modulo Scheduling

Modulo Scheduling

e Software pipelining technique

— Overlapped execution of different iterations of the innermost loop

* Finds a schedule of operations from different iterations

— Repeated in a short interval called initiation interval (lI)

[Himap: Fast and scalable high-quality mapping on cgra via hierarchical abstraction, Wijerathne, D. et al., IEEE TCAD, 2021]
[Ramp: Resource-aware mapping for cgras, Dave, S. et al., DAC, 2018]

[Flattening-based mapping of imperfect loop nests for cgras, Lee, J. et al., CODES, 2014]

[Polyhedral model based mapping optimization of loop nests for cgras, Liu D., et al., DAC, 2013]

[Epimap: Using epimorphism to map applications on cgras, Hamzeh M. et al., DAC, 2012]

[Edge-centric modulo scheduling for coarse-grained recongurable architectures, Park H. et al., PACT, 2008]
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MOTIVATION & BACKGROUND

Existing Solutions - Hosted

Modulo Scheduling PROLOGUE
« MDFG (Modulo Data Flow Graph)
— DFG formed by the repeating schedule of length I =2 - - MDFG
1 1 I
* Prologue and Epilogue EPILOGUE

— DFGs formed by the set of operations executed before and after the MDFG
— Modulo DFG Trio (MDT) -

 Mapping Problem

— Considers application mapping a DFG mapping problem
—  Maps MDFG
— Prologue and epilogue mappings prepared from the MDFG #fiapping

afilljl  bIilli]

for(i=0;i<32;i=i+1){
sum=c[il;
for(j=0;j<32;j=j+1) {
sum+=ali][j]+bl[il[jl; sum-+=al[i][j]+b[i][j]
}
cli]l=sum;

}

sum 14
[Iterative modulo scheduling: An algorithm for software pipelining loops, Rau, B.R., MICRO, 1994] Data Flow Graph |DFG)




MOTIVATION & BACKGROUND

Modulo Scheduling O Standalone Execution Model

Modulo Scheduling
Separate mapping of MDFG, prologue, epilogue

Innermost loop DFG ~ CGRA

Qg@ e PROLOGUE 4 cycles

e e MDFG 3 cycles

EPILOGUE Vtime

time
v i
Modulo scheduling at MiIl =1 PROLOGUE Mapping replicated ST AT Wi = 227 G

from MDFG Mapping = 2x2 CGRA

2 cycles

2 cycles time

A {
Separate EPILOGUE Mapping > 2x2 CGRA

Ltime
MDFG Mapping (Il = 2) > 2x2 CGRA

vtime
EPILOGUE Mapping replicated

from MDFG Mapping 2 2x2 CGRA
Mapping = Scheduling + Placement .

Separate mapping of MDFG, prologue, and epilogue considering each as an individual DFG improves performance




MOTIVATION & BACKGROUND

Existing Solutions - Standalone

Cheng et al.
* Flattens loop nests into a single-nested loop to facilitate DFG mapping

e  Modulo schedules the resultant DFG

* Inflated DFG when the number of loops gets increased

— Increased Il and high energy consumption

Integrated Programmable Array (IPA) [Das et al.]
 Employs direct CDFG mapping
— Register allocation-based mapping

* Does not support modulo scheduling

[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020]
[Efficient mapping of cdfg onto coarse-grained reconfigurable array architectures, Das, S. et al., ASP-DAC, 2017] r
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PROPOSED APPROACH

Standalone Execution Model
Modulo Scheduling
Separate mapping of MDFG, prologue, epilogue

A novel compilation flow supporting:

e Standalone execution of the entire loop nest
* Direct CDFG Mapping

 Modulo scheduling of the innermost loop

18



PROPOSED APPROACH

Standalone Execution Model
Modulo Scheduling
Separate mapping of MDFG, prologue, epilogue

A novel compilation flow supporting:

e Standalone execution of the entire loop nest
* Direct CDFG Mapping

 Modulo scheduling of the innermost loop

Combines modulo scheduling with CDFG mapping

Separate mapping of MDFG, prologue and epilogue DFGs (MDT)

19



PROPOSED APPROACH

Direct CDFG Mapping for(i=0:lz3r§jc=[i5}>{
Register Allocation-Based Constraint-Aware Placement [Das et al.] for(j=0;j<32;j=j+1) {
sum+=a[i][jl+bli][j];
. . e }
* Each Basic block (BB) in the CDFG mapped individually clil=sum;
. . . . }
* Control flow mapping by supporting JMP instruction

* Maintains data integrity between BB mappings

— Symbol variables : variables that are used in multiple BBs

e Constraint-Aware Placement

— Impose register allocation-based constraints in mapping the data nodes (variables)

1<32

Control and Data Flow Graph (CDFG)

* Number of constraints depends on DFG selection criteria

— Breadth-first search (BFS) induces the least number of constraints
— Mapping BBs with a greater number of symbol nodes early helps to reduce the number of constraints

[Efficient mapping of cdfg onto coarse-grained reconfigurable array architectures, Das, S. et al., ASP-DAC, 2017] 20



PROPOSED APPROACH

Proposed Compilation Flow

C Code

Innermost Loop Mapping

DFG selection - Constraint-aware
MDTT Placement

CGRA Model

BFS (Breadth First Search)

DFG selection -
BFS

Loop DFG ? 8

MDT-based CDFG
Transformation

Modulo Scheduling

N ¢ e.u nE © i . Assembly Code
g Constraint-aware - ; Generation
Placement

MDT (Modulo DFG Trio) ~ MDTT (Modulo DFG Trio Traversal)

=7

y

Assembly Code

21



PROPOSED APPROACH

MDT-based CDFG transformation

* Innermost loop DFG replaced with a CDFG formed by Modulo DFG Trio (MDT)
* Nested CDFG mapping problem

Loop1: for(i=0;1<32;i=i+1){ Loopl:i< 32
sum=c[i];
Loop2: for(j=0;j<32;j=j+1) { ] ]
sum+=al[i][j]+b[i][j]; sum=cf[i] sum-+=a[i][j]+b[i][j] | clil=sum

j=0; i=i+1

h
c[i]=sum; ’
) /  Lloop2:j<32 s
l, \\\
\\
\
\\\
\,
M Loopl:i<32
/ kY
bB_Z BB/ prologue BB_mdfg BB_epilogus, BB_4

_ =al+bl
sum=c[i] al=ali][j] SUME=a T sum+=al+bl M ([i]=sum

e e al=alil[j] cli
i=0; g bI=blili] g P )
j=j+1

Repeat 31 X

j=j+1

22



PROPOSED APPROACH

DFG selection by Modulo DFG Trio Traversal (MDTT)

 DFG (BB) selection affects the number of constraints
— Mapping BBs with a greater number of symbol nodes early helps to reduce the number of target location constraints

e MDFG contains the highest number of symbol variables among the DFGs in MDT

PrRoLOGUE mmmmmm) DataNodes|A, B, C]
600
é Q Q MDFG mmmmm) DataNodes[A, B, C, D]

epitogue  EmmmmE) DataNodes[C, D]

Select Prologue Select Epilogue

Select Epilogue Select Prologue
No. of symbol variables in MDFG =n(S N M)=n(MN M) =n(M)

n(P) : no. of varl.ables I.n pr(?logue No. of symbol variables in epilogue =n(S N E)=n(M NE) = n(E)
n(E) : no. of variables in epilogue \\n(M):n(P)+n(E)—n(PnE) =>n(M) > n(P) & n(M) > n(E)
A

Let P, M and E be the set of all variables in
prologue, MDFG and epilogue respectively and
S be the set of all symbol variables (variables used in multiple BBs)

M=PUE
S=(PANM)U(MNE)U(PNE)
PNM=P;MNE=E;(PNE)EM
ThereforeS =PUEU (PNE)=M

No. of symbol variables in prologue =n(SNP)=n(M N P)=n(P)

23
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RESULTS & DISCUSSION

Experimental Setup

Target CGRA: 4x4 PE array configuration of IPA architecture
* Loosely coupled with host CPU (RISCV)

 RTL synthesis: Cadence Genus
e 90nm CMOS technology library

* Placement & Routing : Cadence Innovus

* Power Analysis : Cadence Voltus

 RTL/ netlist simulation: Questasim

* Aset of loop-intensive signal processing kernels

* Including those from PolyBench benchmark suite

[An energy-efficient integrated programmable array accelerator and compilation flow for near-sensor ultralow power processing, Das, S. et al., IEEE TCAD, 202158]
[http://www-roc.inria.fr/ pouchet/software/polybench]



RESULTS & DISCUSSION

PHASE 1: Performance Comparison of Different Execution Models

e Standalone [Proposed] vs Hosted
* Modulo Scheduling Technique: Epimap [Hamzeh et al.]

Execution Latency (cycles)

Matrix Multiplication 464 159 113 310 4.10x
Histogram Equalization 25 225 15484 1.63x
2D Non-Sep Filter 2783615 225768 12.33x
FIR Filter 43 365 6,308 6.87x
DCT 14 450 2 813 5.14x
Bicg 12 452 6451 1.93x
2D Convolution 1352 406 126 446 10.70x
Sobel Filter 2534676 223 844 11.32x

T A N N

[P SXRAFC B T2I 33K FHEHR aVEPaEd 6761 75K S 8&d2g/ 26



RESULTS & DISCUSSION

PHASE 1: Performance Comparison of Different Execution Models

e Standalone [Proposed] vs Hosted

Throughput (Mpbs)
“hosed | _sndoone | ___Gain___
Matrix Multiplication 1.24 5.07 4.10x
Histogram Equalization 106.83 174.03 1.63x
2D Non-Sep Filter 0.97 11.94 12.33x
FIR Filter 2.59 17.80 6.87x
DCT 2.49 12.77 5.14x
Bicg 2.89 5.57 1.93x
2D Convolution 1.00 10.66 10.70x
Sobel Filter 0.91 10.27 11.32x

T R N R

A maximum of 12.33x and an average of 6.75x gain in Throughput 27



RESULTS & DISCUSSION

PHASE 1: Energy Results on Different Execution Models

e Standalone [Proposed] vs Hosted

Energy (Woule)

Matrix Multiplication 287.64 58.97 4.88x
Histogram Equalization 15.31 8.06 1.90x
2D Non-Sep Filter 1702.74 117.49 14.49x
FIR Filter 26.37 3.28 8.03x
DCT 8.79 1.46 6.01x
Bicg 7.56 3.36 2.25x
2D Convolution 845.47 65.80 12.85x
Sobel Filter 1583.88 116.49 13.60x

S A N N

Memory operations performed in the live-in and live-out phases of the hosted execution significantly increase energy consumption
A maximum of 14.49x and an average of 8.00x reduction in energy consumption )8



RESULTS & DISCUSSION

PHASE 2: Comparison with state-of-the-art Standalone Solution

* Proposed vs state-of-the-art solution employing Loop Flattening [Cheng et al.]
Loopl: for (h=0; n <M * N ; n++){

Loop1l: for (i=0; i<M ; i++){ ,
i=n/N;
sum=0; ji=n%N
Loop2: for (j=0; j<N ; j++) if (j==0)
sum += array_in[if[j]; sum=0;
array_out[i] = sum; sum += array_in[i][j];
} if (j==N -1)
array_out[i] = sum;
}

No. of nodes in the modulo scheduled DFG

23 B Cheng etal M Proposed

2D Conv Sobel

30

N N
o wn

Number of nodes

Mat Mul Hist Eq 2D Non- DCT Bicg

Sep
[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020] 29



RESULTS & DISCUSSION

PHASE 2: Comparison with state-of-the-art Standalone Solution

* Proposed vs state-of-the-art solution employing Loop Flattening [Cheng et al.]

Execution Latency (cycles)

o

B Cheng et al === Proposed

N

w

=

Normalized execution cycles
N

o

Mat Mul Hist Eq 2D Non- FIR DCT Bicg 2D Conv Sobel
Sep

A maximum of 4.80x and an average of 2.80x speed-up

[Opencgra: An open-source unified framework for modeling, testing, and evaluating cgras., Tan, C. et al., ICCD, 2020] 30
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CONCLUSION

* Explorative study on the impact of execution model on performance and energy
efficiency of CGRAs

* A novel compilation flow for standalone nested loop acceleration on CGRA

* Combines modulo scheduling with direct CDFG mapping
— Modulo schedules the innermost loop
— Maps prologue, MDFG, and epilogue DFGs separately

e A maximum of 12.33x and an average of 6.75x speed-up
Up to 14.49x and an average of 8.00x reduction in energy over hosted model

e Upto 4.80x and an average of 2.80x speed-up over the state-of-the-art standalone
solution
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